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Quantum tunneling, dynamical symmetry, and quantum revival
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Quantum tunneling dynamics of a periodically driven symmetric double-well system is studied within the
framework of the Floquet theory. The role that a dynamical symmetry of the system plays in connection with
tunneling is analyzed. The analysis shows that, in order to fully describe tunneling exhibited by a system with
a dynamical symmetry, one should look at wave functions at times corresponding to integral multiples of the
period of the driving force plus one-half period. The analysis shows also that tunneling can be understood to
occur as a result of the quantum revival, a phenomenon well known in quantum optics.

PACS number(s): 05.45.+b, 05.20.—y

L. INTRODUCTION

Recent investigations [1-5] of quantum tunneling in a
double-well system in the presence of a periodic driving
force have led to a deeper understanding of the quantum
dynamics of a periodically driven system. The approach
based on the Floquet theory [6—8] in particular has proved
most useful, as it provides a convenient framework in which
to discuss tunneling. For example, coherent tunneling be-
tween regular islands recently observed [1] can be under-
stood in terms of Floquet states localized on the islands [2].
Within the Floquet formalism, the tunneling rate is deter-
mined simply by quasienergy splittings of the Floquet states
involved. Thus, it can readily be understood that application
of the driving force can lead to an enhancement [1] or reduc-
tion [3] of the tunneling rate depending on the amplitude and
frequency of the force.

From a fundamental viewpoint, tunneling can be viewed
as a quantum effect related to symmetries of the system. The
first such realization led to an identification of the process
known as dynamical tunneling [4]. The occurrence of quan-
tum barrier tunneling can also be predicted solely from an
argument based on a dynamical symmetry of the system be-
ing considered [5].

In this paper we discuss quantum tunneling that occurs in
a symmetric double-well system (e.g., a particle in a sym-
metric double square-well potential or a Duffing double-well
oscillator) driven by a periodic force using the Floquet ap-
proach. We wish in particular to address the question con-
cerning the relation between quantum barrier tunneling and
dynamical symmetry, which was briefly considered in the
past [5] but has not been fully exploited.

Two main findings of the present investigation are the
following:

(1) For a system with a dynamical symmetry, Floquet
states possess either odd or even dynamical parity, and con-
sequently a state corresponding to spatial reflection of the
initial state is reached at certain odd-half-integer multiples of
the period of the driving force. Thus, quantum tunneling in a
system with a dynamical symmetry cannot be fully described
by looking only at the wave functions at times of integral
multiples of the driving period. A complete tunneling is
achieved rather at times corresponding to integral multiples
of the period plus one-half period.
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(2) As long as quasienergies form a discrete rational set,
even if the initial state consists of a large number of Floquet
states, a state corresponding to spatial reflection of the initial
state is reached at a time (which turns out to be an odd-half-
integer multiple of the driving period) when the oscillating
Floquet states (almost) come back in phase with each other.
Thus, tunneling in a system with a dynamical symmetry is
not restricted to initial states forming a superposition of two
eigenstates of opposite parity; it can also occur when initial
states consist of a larger number of Floquet states. At a time
twice the tunneling time, the oscillating Floquet states again
come back in phase with each other, this time to reproduce
the initial state. This phenomenon of tunneling and recur-
rence is analogous to the quantum revival [9] observed in
optical systems.

II. THEORY

Let us consider a particle of mass m in a symmetric
double-well potential driven by a periodic force of period
T. The Hamiltonian

2
H(q.p.0)= 5=+ V(a)+qF (1) 0

is of course periodic in time,

H(q.,p,t+T)=H(q,p.t), 2)

since F(t+T)=F(t). In addition we assume that the force
satisfies the relation F(z+7/2)= —F(t), which holds, for
example, if the force varies sinusoidally in time. This rela-
tion together with the assumed symmetry of the potential

[V(=¢q)=V(q)] yield
H(_Qsp’t+T/2):H(q’P,t)s (3)

i.e., the Hamiltonian for our system possesses a dynamical
symmetry. An immediate consequence of Eq. (3) is that each
Floquet state x,(g,t) is either odd or even with respect to the
transformation, t—¢+7/2 and g— —gq; i.e.,

Xn(q,t+T2)==*x,(—q.1), 4)

where the plus (minus) sign is to be applied to a state of even
(odd) dynamical parity.
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According to the Floquet theory, if the initial state

Y(q,t=0) is expanded in terms of Floquet states
X2 (@D=x,(9.0=x,(¢,NT)(N=1,2,3,...) as
Wa.t=0)=2 c,xa(), (5)

then the state ¥(q,r) at a later time t=NT is given by [2,8]
l//(q’NT):E Can(q)e“iNs”T/ﬁ. (6)

Making use of Eq. (4) we can also write (q,t) at
t=(N—1/2)T as

Ya.(N=HT)=2 (e, xu(—gq)e NPT (7)

Equation (7) constitutes the basic relation for our discus-
sion of tunneling. In particular, we note that, if we find an
integer N, such that

(NO_%)(En_el)T/ﬁzzwmn (8)

(m, is an arbitrary integer) for all €,’s corresponding to the
Floquet states yx, having the same dynamical parity as x;,
and

(No—1)(e,—€)T/h=2m(m,+ 1) ©)

(m,, is an arbitrary integer) for all €,’s corresponding to the
Floquet states y, having the opposite dynamical parity to
X1, we have from Eq. (7)

Wlg,(Ng— D T)= e Wom1RaThY ¢ v (—q),  (10)

where the plus (minus) sign should be chosen if the state
X1 has an even (odd) dynamical parity. In order to discuss
tunneling, we assume that the initial state given by Eq. (5)
consists of a wave packet localized in one of the two wells of
the potential. Equation (10) then indicates that the state at
t=(Ng— %)T is a wave packet localized in the other well,
because |¥(q,(No— HT)|?>=|(—¢,0)|%. Since Eq. (10)
holds exactly as long as N, satisfies Egs. (8) and (9), a pos-
sibility of a complete tunneling is suggested by Eq. (10).

To be specific, we consider a simple case when the initial
wave packet localized in one well consists of two Floquet
states, i.e., when

#(q.0)=c, Xn, (@) FCnXn,(q)- (11)

The state at t=(Ny—1/2)T is then given, according to Eq.
(10), by

¥l(q,(No—3)T)=xe ‘No= D& e, . (—q)
+Cn2Xn2(_Q)]’ (12)

where Ny can be chosen to be the smallest integer that sat-
isfies

(NO—%)(enz—enl)T/ﬁ=27Tm (13)

(m is an arbitrary integer) if the two states Xn, and Xn, have
the same dynamical parity, and

(No=3)(€y,~ €, ) T/h=27m(m+ 1) (14)

(m is an arbitrary integer) if Xn, and Xn, have opposite dy-
namical parities. The tunneling time is obviously given by
7=(Ny— 1/2)T227Tﬁ/f€n2“‘fnl|‘

It should be noted that earlier analyses of tunneling in-
volving two Floquet states are based largely upon their sym-
metric and antisymmetric combinations [2,3]. One usually
considers a situation in which the initial wave packet is
given, for example, by a symmetric combination

1
¢(q,0)=$[xnl(@+xn2(q)] (15)

and looks for the time ¢ at which the wave function is rep-
resented by an antisymmetric combination. In fact Eq. (6)
indicates that, at t=N;T, where N, is given by

Ni(€,,~ €, )T/h=2m(m+3) (16)

(m is an arbitrary integer), the wave function is indeed given
by an antisymmetric combination

1
¥(q.N,T)= ie””“ﬂ”"ﬁ[xnl(q)—an(q)l (17)

If the Floquet states an(q) and XnQ(q) are given, respec-

tively, by symmetric and antisymmetric functions of ¢
peaked in both wells, then Eq. (15) represents a wave packet
localized in the left well while Eq. (17) represents the same
wave packet localized in the right well. We emphasize that,
in order for ¢/(gq,N,T) of Eq. (17) to represent a wave packet
tunneled through a barrier, the two Floquet states involved
are required to be symmetric and antisymmetric functions of
g, each possessing peaks in both the left and right wells.
Tunneling based on Eq. (12) on the other hand is more gen-
eral in that Eq. (12) is a direct consequence of the symmetry
of the system. All that is required is that the initial state given
by Eq. (11) be a wave packet localized in one well. There is
no requirement on the characteristics of each individual Flo-
quet state.

III. EXAMPLE

As an illustration we consider a particle in a double
square-well potential of width 2a with a central barrier of
width 25 and height V, i.e.,

®, |g|>a
V(g)=4 0, b<|g|<a (18)
VO» lqlgb

The particle is driven by a sinusoidal force of period T and
amplitude F,, so that the Hamiltonian for the system is

2

H d +V +qgF 2t 19
= m (g)+q 0c0s| . (19)
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FIG. 1. Husimi phase-space plots of two Flo-
quet states x 1o and y»q for the driven double-well
system with a=4,b=0.01,V;,=500,F,=2.5, and

@ .. | :> : | T=1. Contours are drawn in steps of 0.01.

This Hamiltonian not only is periodic but also possesses a
dynamical symmetry. Our computation has been performed
with parameters chosen as a=4,b=0.01,V,=500,F,=2.5,
and 7=1. With these parameters, the number of eigenstates
with energy less than V=500 is ~80.

In Fig. 1 we show Husimi plots [10] of two Floquet states
X190 and xoo. These two states correspond, respectively, to
the 18th and 19th excited states in the limit F3—0, whose
energy eigenvalues lie well below V. They look almost
identical in the phase-space plots with peaks in the left well
and near the center, but x,9 is a symmetric function of ¢
while y,o is an antisymmetric function. They also possess
opposite dynamical parities. As an initial state we choose a
symmetric combination of these two Floquet states

1
¥(q,0)= 7—2~[X19(q)+)(zo(q)], (20)

and compute the time development. Husimi plots of the
wave function ¢(g,t) at some selected times are shown in
Fig. 2. The initial wave function given by Eq. (20) is seen to
be a wave packet localized in the left well. It can also be seen

that ¢(q,T) is not much different from ¢(q,0). In fact, for
the system being considered, we have in general
|y(q,t+ T)|~|¥(q.t)|, because, according to our numerical
computation, the quasienergies satisfy

T

m298.84, (21)

ie., (€19— €y)T/h=1/98.84<1. Application of this in-
equality to Eq. (6) immediately yields |(q,T)|~|¢(q.0)|.
It is clear from Fig. 2 that the initial wave packet has
tunneled through the central barrier at t=98.57. Substitution
of Eq. (21) into Eq. (14) yields indeed that Eq. (14) is satis-
fied approximately with m=0 and Ny=99. The tunneling
time is thus given by (Ny— 1/2)T=98.57T, in agreement with
the observation based on Fig. 2. It is also interesting to note
that Eq. (16) is satisfied approximately with m=0 and
N;=099. Thus, the wave function at r=99T is given approxi-
mately by an antisymmetric combination of x;9 and y,y. In
this case the antisymmetric combination does not yield a
wave packet localized deep on the right side of the right well
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FIG. 3. The probability P;(¢) to find the particle in the left well
at time ¢ vs time ¢. Parameters are the same as in Fig. 1.

(see Fig. 2 at t=99T), because neither the Floquet state
X19 NOT X, has a peak centered in that neighborhood.

As further evidence of tunneling we plot in Fig. 3 the
probability P;(¢) of finding the wave packet in the left well
at time ¢, defined as

0
PL(t)=f_alw(qJ)|2dq- (22)

The probability P;(z) is seen to decrease to its minimum
value r==98.5T and increase back to its intial value at
t==197T. This oscillatory tunneling with a period 1977 con-
tinues in the absence of dissipation. The fast oscillations of
period T seen on a small scale can be understood as arising
from the classical oscillation of the wave packet in the ab-
sence of the central barrier. Since the barrier is very thin
(b=0.01), there is a finite probability for the wave packet to
tunnel through the barrier and oscillate between the two
wells at g=*a= *4 with period T=1.

IV. DISCUSSION

A word about our choice of an initial wave packet is in
order. In general, a wave packet localized near an elliptic
fixed point of resonance consists of a small number of local-
ized Floquet states, whereas that localized near a separatrix
consists of many delocalized Floquet states [11-13]. Shown
in Fig. 4 is the classical Poincaré map of our double-well
system with the same parameters as before. Clearly, the Flo-
quet states x ¢ and x,o shown in Fig. 1 reveal the structure of
quantum nonlinear resonance [11,14] similar to the classical
structure. It can easily be expected that their linear combina-
tion should produce a wave packet localized in one of the
elliptic fixed points of Fig. 4. On the other hand, if a wave
packet localized in the region away from the elliptic fixed
points of the resonance is to be constructed, many Floquet
states need to be superposed. In this case many quasienergies
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FIG. 4. Classical Poincaré map of the driven double-well sys-
tem. Parameters are the same as in Fig. 1.

are involved and it gets more difficult to find an integer N,
and a set of integers m, that satisfy Eqgs. (8) and (9). Never-
theless, as long as the initial wave packet consists of a finite
number of Floquet states having discrete values of quasien-
ergy, an integer N that at least approximately satisfies Egs.
(8) and (9) should exist, and thus tunneling should eventually
occur. In this respect quantum tunneling is analogous to the
phenomenon of quantum revival observed in optical systems
[9].

Finally, we wish to comment briefly on the question of
what happens to tunneling if the dynamical symmetry of the
system is broken slightly, e.g., if the width or depth of the
two potential wells is not exactly the same. We have shown
earlier that a driven particle in a double square well behaves
more regularly when the potential is symmetric than when it
is not [15]. It should be emphasized that what we describe in
the present work is tunneling of a coherent nature, which
occurs as a direct consequence of symmetry. The phenom-
enon of tunneling is thus more clearly defined if the system
behaves more regularly, i.e., if the system symmetry is less
severely broken.

In conclusion we have shown that quantum tunneling ex-
hibited by a periodically driven system in a symmetric po-
tential can be viewed as a necessary consequence of a dy-
namical symmetry of the system. The degree of tunneling
depends generally on quantitative relations between quasien-
ergy splittings of Floquet states that constitute the initial
wave packet. Tunneling can be observed at times corre-
sponding to certain odd-half-integer multiples of the period
of the driving force and can be understood to occur as a
result of the quantum revival mechanism well known in
quantum optics.
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